Home     Baþlangýç     Evrende yaþayabilmek için    
Inhabited Sky
    News@Sky     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Basýn     Giriþ  

HD 201835


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Oxygen abundances in nearby stars. Clues to the formation and evolution of the Galactic disk
The abundances of iron and oxygen are homogeneously determined in asample of 523 nearby (d<150 pc) FGK disk and halo stars withmetallicities in the range -1.5<[Fe/H]<0.5. Iron abundances wereobtained from an LTE analysis of a large set of Fe I and Fe II lineswith reliable atomic data. Oxygen abundances were inferred from arestricted non-LTE analysis of the 777 nm O I triplet. We adopted theinfrared flux method temperature scale and surface gravities based onHipparcos trigonometric parallaxes. Within this framework, theionization balance of iron lines is not satisfied: the mean abundancesfrom the Fe I lines are systematically lower by 0.06 dex than those fromthe Fe II lines for dwarf stars of Teff>5500 K and[Fe/H]<0.0, and giant stars of all temperatures and metallicitiescovered by our sample. The discrepancy worsens for cooler and metal-richmain-sequence stars. We use the stellar kinematics to compute theprobabilities of our sample stars to be members of the thin disk, thickdisk, or halo of the Galaxy. We find that the majority of thekinematically-selected thick-disk stars show larger [O/Fe] ratioscompared to thin-disk stars while the rest show thin-disk abundances,which suggests that the latter are thin-disk members with unusual(hotter) kinematics. A close examination of this pattern for disk starswith ambiguous probabilities shows that an intermediate population withproperties between those of the thin and thick disks does not exist, atleast in the solar neighborhood. Excluding the stars with unusualkinematics, we find that thick-disk stars show slowly decreasing [O/Fe]ratios from about 0.5 to 0.4 in the -0.8<[Fe/H]<-0.3 range. Usinga simple model for the chemical evolution of the thick disk we show thatthis trend results directly from the metallicity dependence of the TypeII supernova yields. At [Fe/H]>-0.3, we find no obvious indication ofa sudden decrease (i.e., a "knee") in the [O/Fe] vs. [Fe/H] pattern ofthick-disk stars that would connect the thick and thin disk trends at ahigh metallicity. We conclude that Type Ia supernovae (SN Ia) did notcontribute significantly to the chemical enrichment of the thick disk.In the -0.8<[Fe/H]<+0.3 range, thin-disk stars show decreasing[O/Fe] ratios from about 0.4 to 0.0 that require a SN Ia contribution.The implications of these results for studies of the formation andevolution of the Galactic disk are discussed.Tables 4-6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/465/271 Partially based onobservations obtained with the Hobby-Eberly Telescope, which is a jointproject of the University of Texas at Austin, the Pennsylvania StateUniversity, Stanford University, Ludwig-Maximilians-UniversitätMünchen, and Georg-August-Universität Göttingen; and datafrom the UVES Paranal Observatory Project (ESO DDT Program ID266.D-5655).

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The chemical compositions of Galactic disc F and G dwarfs
Photospheric abundances are presented for 27 elements from carbon toeuropium in 181 F and G dwarfs from a differential local thermodynamicequilibrium (LTE) analysis of high-resolution and high signal-to-noiseratio spectra. Stellar effective temperatures (Teff) wereadopted from an infrared flux method calibration of Strömgrenphotometry. Stellar surface gravities (g) were calculated from Hipparcosparallaxes and stellar evolutionary tracks. Adopted Teff andg values are in good agreement with spectroscopic estimates. Stellarages were determined from evolutionary tracks. Stellar space motions (U,V, W) and a Galactic potential were used to estimate Galactic orbitalparameters. These show that the vast majority of the stars belong to theGalactic thin disc.Relative abundances expressed as [X/Fe] generally confirm previouslypublished results. We give results for C, N, O, Na, Mg, Al, Si, S, K,Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu. Theα elements - O, Mg, Si, Ca and Ti - show [α/Fe] to increaseslightly with decreasing [Fe/H]. Heavy elements with dominantcontributions at solar metallicity from the s-process show [s/Fe] todecrease slightly with decreasing [Fe/H]. Scatter in [X/Fe] at a fixed[Fe/H] is entirely attributable to the small measurement errors, afterexcluding the few thick disc stars and the s-process-enriched CHsubgiants. Tight limits are set on `cosmic' scatter. If a weak trendwith [Fe/H] is taken into account, the composition of a thin disc starexpressed as [X/Fe] is independent of the star's age and birthplace forelements contributed in different proportions by massive stars (Type IIsupernovae), exploding white dwarfs (Type Ia supernovae) and asymptoticred giant branch stars.By combining our sample with various published studies, comparisonsbetween thin and thick disc stars are made. In this composite sample,thick disc stars are primarily identified by their VLSR inthe range -40 to -100 km s-1. These are very old stars withorigins in the inner Galaxy and metallicities [Fe/H]<=-0.4. At thesame [Fe/H], the sampled thin disc stars have VLSR~ 0 kms-1, and are generally younger with a birthplace at about theSun's Galactocentric distance. In the range -0.35 >=[Fe/H]>=-0.70,well represented by present thin and thick disc samples, [X/Fe] of thethick disc stars is greater than that of thin disc stars for Mg, Al, Si,Ca, Ti and Eu. [X/Fe] is very similar for the thin and thick disc for -notably - Na and iron-group elements. Barium ([Ba/Fe]) may beunderabundant in thick relative to thin disc stars. These results extendprevious ideas about composition differences between the thin and thickdisc.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Photoelectric Vilnius Photometry of Hipparcos Turn-Off Region Stars
Seven-color photometry in the Vilnius system and photometricclassification in terms of spectral type, absolute magnitude andmetallicity are presented for 145 Hipparcos stars of the turn-offregion, most of which have parallaxes determined to an accuracy of atleast 15%. The stars selected for the observing program included thoseidentified kinematically as intermediate between the thin disk and halo,plus a number of weak-lined stars discovered previously from objectiveprism surveys. The metallicity distribution we find for a kinematicallydefined sample of possible members of the thick disk has a meanabundance [Fe/H]= --0.3 dex and a dispersion of 0.3 dex. Our data seemto suggest a large age for this intermediate population.

The Tokyo PMC catalog 90-93: Catalog of positions of 6649 stars observed in 1990 through 1993 with Tokyo photoelectric meridian circle
The sixth annual catalog of the Tokyo Photoelectric Meridian Circle(PMC) is presented for 6649 stars which were observed at least two timesin January 1990 through March 1993. The mean positions of the starsobserved are given in the catalog at the corresponding mean epochs ofobservations of individual stars. The coordinates of the catalog arebased on the FK5 system, and referred to the equinox and equator ofJ2000.0. The mean local deviations of the observed positions from theFK5 catalog positions are constructed for the basic FK5 stars to comparewith those of the Tokyo PMC Catalog 89 and preliminary Hipparcos resultsof H30.

Kinematics of Sandage-Fouts stars in three cardinal directions
V and (B - V) for 429, 442, and 427 stars are observed in the directionsof the anticenter, Cygnus, and the NGP, respectively, and DDO colors forthose stars G0 and later. The samples observed are ones for whichSandage and Fouts (1987) have published radial velocities. W, V, and Wcomponents of space velocity are derived from DDO distances withavailable proper motions. A clear correlation was found to exist betweenthe velocity dispersions and Fe/H with the dispersions decreasing asFe/H increases to about + 0.00, where V then becomes significantlynegative. The 'thick disk' component is clearly recognized, with sigma(W) approximately equal to 36 km/sec. In the 'old thin disk' and the'young thin disk', 43 percent and 42 percent of the stars have negativeV values, respectively.

U, V, W velocity components for the old disk using radial velocities of 1295 stars in the three cardinal Galactic directions
New radial velocities are presented for 1295 stars chosen at random nearthe three cardinal Galactic directions of l = 180 deg, b = 0; l = 90deg, b = 0 deg; and b = 90 deg, giving the distribution in U, V, and W,respectively, from the radial velocities alone. The measurements weremade with the coude spectrograph of the Mount Wilson 100 in. Hookerreflector. The purpose of the program is to set limits on the densitynormalization in the solar neighborhood of the old thin disk, the oldthick disk, and the halo. Many more high-velocity stars are present inthe unbiased sample than expected from previous estimates of thenormalization. The data suggest the density ratios in the solarneighborhood to be about 90 percent, 10 percent, and about 0.5 percentfor the thin disk, thick disk, and halo populations, respectively.

The improvement of the star positions of the Potsdam PZT catalog
Regular determinations of the right ascension and declination of starswith the aid of a photographic zenith tube (PZT) were begun in ageodetic-astronomical observatory of the German Democratic Republic in1972. Results obtained during the years 1972 and 1973 were used for afirst improvement of stellar positions listed in the Third Catalog(Katalog) of the 'Astronomische Gesellschaft' (Astronomical Society)AGK3. The corrections resulted in a distinct improvement of the accuracyof the positional values. However, the possibility could not be excludedthat the results were still affected by remaining errors with systematiccharacteristics. In order to eliminate the considered deficiencies, newstellar coordinate corrections were computed on the basis of aconsiderably larger data set. The new catalog containing the reviseddata has been called PZT 80, while the data obtained on the basis of thefirst observations are listed in PZT 74. The new catalog is presented inthe appendix.

A Search for Metal-Deficient Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...22..117B&db_key=AST

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Kugu
Sað Açýklýk:21h10m18.82s
Yükselim:+52°25'50.4"
Görünürdeki Parlaklýk:8.019
Uzaklýk:74.963 parsek
özdevim Sað Açýklýk:101.2
özdevim Yükselim:43.4
B-T magnitude:8.576
V-T magnitude:8.065

Kataloglar ve belirtme:
Özgün isimleri   (Edit)
HD 1989HD 201835
TYCHO-2 2000TYC 3600-284-1
USNO-A2.0USNO-A2 1350-13577398
HIPHIP 104520

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin