Contents
Images
Upload your image
DSS Images Other Images
Related articles
Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Kinematics of Sandage-Fouts stars in three cardinal directions V and (B - V) for 429, 442, and 427 stars are observed in the directionsof the anticenter, Cygnus, and the NGP, respectively, and DDO colors forthose stars G0 and later. The samples observed are ones for whichSandage and Fouts (1987) have published radial velocities. W, V, and Wcomponents of space velocity are derived from DDO distances withavailable proper motions. A clear correlation was found to exist betweenthe velocity dispersions and Fe/H with the dispersions decreasing asFe/H increases to about + 0.00, where V then becomes significantlynegative. The 'thick disk' component is clearly recognized, with sigma(W) approximately equal to 36 km/sec. In the 'old thin disk' and the'young thin disk', 43 percent and 42 percent of the stars have negativeV values, respectively.
| U, V, W velocity components for the old disk using radial velocities of 1295 stars in the three cardinal Galactic directions New radial velocities are presented for 1295 stars chosen at random nearthe three cardinal Galactic directions of l = 180 deg, b = 0; l = 90deg, b = 0 deg; and b = 90 deg, giving the distribution in U, V, and W,respectively, from the radial velocities alone. The measurements weremade with the coude spectrograph of the Mount Wilson 100 in. Hookerreflector. The purpose of the program is to set limits on the densitynormalization in the solar neighborhood of the old thin disk, the oldthick disk, and the halo. Many more high-velocity stars are present inthe unbiased sample than expected from previous estimates of thenormalization. The data suggest the density ratios in the solarneighborhood to be about 90 percent, 10 percent, and about 0.5 percentfor the thin disk, thick disk, and halo populations, respectively.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Cygnus |
Right ascension: | 21h39m18.35s |
Declination: | +42°01'27.6" |
Apparent magnitude: | 8.887 |
Distance: | 277.778 parsecs |
Proper motion RA: | 6.6 |
Proper motion Dec: | -5.2 |
B-T magnitude: | 9.188 |
V-T magnitude: | 8.912 |
Catalogs and designations:
|