내용
사진
사진 업로드
DSS Images Other Images
관련 글
New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy 321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423
| Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521
| Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
| Galactic Cepheids. Catalogue of light-curve parameters and distances We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.
| Direct calibration of the Cepheid period-luminosity relation After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.
| I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.
| The shape and scale of Galactic rotation from Cepheid kinematics A catalog of Cepheid variables is used to probe the kinematics of theGalactic disk. Radial velocities are measured for eight distant Cepheidstoward l = 300 deg; these new Cepheids provide a particularly goodconstraint on the distance to the Galactic center, R0. We model the diskwith both an axisymmetric rotation curve and one with a weak ellipticalcomponent, and find evidence for an ellipticity of 0.043 +/- 0.016 nearthe sun. Using these models, we derive R0 = 7.66 +/- 0.32 kpc andv(circ) = 237 +/- 12 km/s. The distance to the Galactic center agreeswell with recent determinations from the distribution of RR Lyraevariables and disfavors most models with large ellipticities at thesolar orbit.
| Galactic kinematics of Cepheids from HIPPARCOS proper motions The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.
| Search for resonance effects in long period Cepheids. Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Rotation Curve of the System of Classical Cepheids and the Distance to the Galactic Center Not Available
| New radial velocities for classical cepheids. Local galactic rotation revisited New centre-of-mass radial velocities are calculated for 107 classicalcepheids from CORAVEL observations. We generally determine thesevelocities from four to six measurements carefully spaced in phase, byfitting a "typical" radial velocity curve or the mirror image of thelight curve. A decomposition in Fourier series is used for stars withmore than 10 measurements. Distances are then computed through aperiod-luminosity-colour relation for 278 classical cepheids with knownradial velocity, and an axisymmetric galactic rotation model is appliedto the sample, using a generalised non-linear least square method withuncertainties on both the velocities and the distances. The bestresults, with a rotation curve modelled as a third order polynomial,are: Rsun_=8.09 +/-0.30 kpc, A=15.92 +/-0.34 km/s/kpc, 2ARsun_=257 +/-7 km/s, A2=d^2theta(R)/d R^2^=-3.38+/-0.38 km/s/kpc^2^, A3=d^3theta(R)/d R^3^=1.99 +/-0.62km/s/kpc^3^, u_0_=9.32 +/-0.80 km/s, v_0_=11.18 +/-0.65 km/s. The effectof modifying the distance scale of cepheids, the absorption coefficientor the fitting procedure algorithm are examined. It appears that theproduct 2 A Rsun_ is very robust towards these changes. Theextended sample of classical cepheids with known radial velocitypresented in this paper seems to imply a higher value for A thananterior studies. The radial velocity residuals show a systematic k-termof about 2 km/s. New evidence from cluster cepheids excludes anintrinsic cause for this shift, and a dynamical cause is proposed from acomparison with a N-body simulation of the Galaxy. The simulation showsthat a systematic bias of this magnitude is typical. The structure ofthe local residual velocity field is examined in some detail.
| The Cepheid Period-Luminosity Relation from Independent Distances of 100 Galactic Variables Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...418..135G&db_key=AST
| The structure of the Cepheid instability strip About 100 classical Cepheids having color excesses on a homogeneoussystem with standard errors of 0.02 or less mag are used with theFeast-Walker period-luminosity-color relation to study the distributionof such stars in the instability strip. It is found that mean (B-V)magis a better indicator of mean effective temperature than is mean B(i) -mean V(i)(i). The blue edge of the color-magnitude distribution isconsistent with the theoretical blue edge for Y = 0.28 and Z = 0.02.Although the highest amplitude stars are found near the center of theperiod-color array, high- and low-amplitude stars can intermingle, andboth kinds are to be found near the edges of the distribution. The sameis true on the C-M array. Finally, it is pointed out that the Cepheidsdo not populate the instability strip uniformly if the red edge is takento be parallel to the theoretical blue edge. Rather, the localinstability region runs as a parallelogram in the C-M array from thetheoretical blue edge upward and to the red.
| Cepheid radial velocity curves revisited Existing radial velocity data of 57 type I Galactic Cepheids areanalyzed to study the systematic variation of their Fourierdecomposition with the period. All important features (including thebump progression) of the radial velocity variation are described bylow-order (third-order to fifth-order) Fourier decompositions. The dataare in fair agreement with the recent hydrodynamic results, whichimplies that the 2:1 resonance between the fundamental and secondovertone modes is the most important factor in the shaping of the radialvelocity curves. The highest quality data of this sample suggest a verytight progression of the Fourier coefficients, which indicates strictconstraints on the physical parameters or on the evolutionary history ofCepheids.
| Color Excesses on a Uniform Scale for 328 Cepheids Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJS...72..153F&db_key=AST
| Towards a reconciliation of Cepheid masses A new set of homogeneous Wesselink masses for 101 classical Cepheids isderived, as well as new evolution and pulsation masses for a subset of52 stars with known luminosities. A detailed comparison and discussionof the different mass determinations shows that, within theuncertainties inherent in each of the methods, there is satisfactoryagreement over the entire range of Cepheid pulsation periods. Inparticular, there is very good agreement among the evolution andWesselink masses. Theoretical masses of Cepheids as defined by Cox showreasonable agreement with the evolution masses.
| The radii of 27 southern galactic Cepheids Photometric and radial velocity data for 27 Cepheids with P greater than9 d are analyzed and the results combined with those for 21shorter-period stars observed in an identical manner. The data areexamined for evidence of binary companions and the radii of these starsare determined as well as a period-radius relation for Cepheids.
| The period-radius relation for classical Cepheids from the visual surface brightness technique Surface brightnesses have been obtained for 52 southern Cepheids and 63northern Cepheids using the (V-R) color index. A period-radius relation(in the period range of 3-45 days) of log R = 1.108 + or - 0.743 log Pis obtained, with uncertainties of + or - 0.023 in the zero point andslope. The influence of unresolved binaries and possible overtonepulsators on this relation is considered. The present period-radiusrelation is shown to be consistent with current determinations ofdistances and effective temperature scales for classical Cepheids. Noevidence is found to support the contention that all shorter periodCepheids are overtone pulsators.
| A cluster analysis of cepheids The galactic distribution of 300 cepheids is considered. It is shownthat about half of them enter groups with characteristic dimensions ofseveral hundred parsecs. Due to their proximity, the cepheids in eachtaxon have similar radial velocity and period values. If the period of acepheid is associated with age, the results indicate that the clustercontains stars of approximately the same age.
| Precise Fourier Decomposition Parameters for Classical Cepheids Abstract image available at:http://adsabs.harvard.edu/abs/1988A&A...196..159A
| Classical Cepheids - Their distances and space distribution A simplified method of calculating classical Cepheid distances isproposed. It is based on photometric data, without the use of thereddenings. By means of results obtained in this way the followingproblems are discussed: Cepheid double and more numerous aggregates andproperties of the cluster and association Cepheid.
| Milky Way rotation and the distance to the galactic center from Cepheid variables The compiled photometry, reddenings, and radial velocities of GalacticCepheids are fit with an axisymmetric Galactic rotation model. R(0) =7.8 + or - 0.7 kpc and 2AR(0) = 228 + or - 19 km/s are derived. The LMCdistance modulus is 18.45 on the same absolute calibration. ObservedCepheid gamma velocities appear on average to be 30 + or - 1 km/s morenegative than the true corresponding center-of-mass velocities. Thetrend of increasing blueness toward larger Galactocentric radiusconfirms the radial metallicity gradient found spectroscopically.
| The catalogue of light curves parameters, distances and space coordinates of classical Cepheids. Not Available
| Population I pulsating stars. II - Period-age (-colour) relations Ages corresponding to various evolutionary phases of population Ipulsating stars (89 Delta Scuti variables and 155 classical cepheids)are interpolated in the evolutionary track systems of Iben (1967) andPaczynski (1970). The stellar ages are considerably less in the lattersystem than in the former one. The undertainty of the age of a star isestimated when various evolutionary phases are possible for this star (agreater age corresponds to a later phase). Semiempiricalperiod-age-color (P-t-C) and period-age (P-1) relations are derived forvarious modes, groups of stars, color indices (and effectivetemperature), and evolutionary phases. For Delta Scuti stars, theuncertainty of ages calculated from the P-t relations for differentmodes, is estimated. Theoretical P-t-C and P-t relations for Delta Scutistars are obtained and compared with semiempirical relations (such acomparison of P-t relations is performed for classical cepheids too).The improvement of the age accuracy is estimated when a P-t-C relationis used instead of the corresponding P-t relation. The theoretical andsemiempirical period ratios of radial pulsations, derived from the P-trelations for Delta Scuti stars, are compared. There is relatively goodagreement between the P-t relations for the two types of population Ipulsating stars, but a 'gap' exists between them.
| Population I pulsating stars. I - Period-luminosity (-colour) relations Luminosities of Population I pulsating stars (Delta Scuti variables andclassical cepheids) are investigated. From data for 80 Delta Scutistars, semiempirical period-luminosity-color (P-L-C) relations andperiod-luminosity (P-L) relations are obtained for the four lowest modesof radial pulsations. The improvement of the accuracy of the stellarluminosity is determined when a P-L-C relation is used instead of thecorresponding P-L relation. From data for 155 classical cepheids,empirical P-L relations are derived for short-period stars, long-periodstars, and s-cepheids. The comparison of the P-L relations for the twotypes of variable stars shows good agreement, but between them there isa 'gap' with a dim nature.
| Intermediate-band and H-beta observations of short-period Cepheids Intermediate-band and H-beta observations along with light and colorcurves for short-period Cepheids are presented. Although mainlysouthern, a few northern variables are included. Two of the variablesare briefly discussed.
| Photometry and radial velocities of 27 southern galactic Cepheids Some 950 radial velocities and about 1100 UBV(RI)cphotometric measures of 27 Galactic Cepheids with R 9d are presented.Pulsation periods are redetermined and light and color curves areproduced by aligning the older photometry with new data using suitablezero-point adjustments. The new radial velocities prove to be of a muchhigher quality than the rather limited amount of similar data availablefrom the literature, and so only the new data have been used in theproduction of the velocity curves. Parametric representations of thesecurves are presented in preparation for analysis in a future paper.
| Classification of intrinsic variables. IX - The Cepheid domain The present H-beta, RI and intermediate band observations obtained for135 high mass, long- and short-period Cepheids (LPC and SPC) throughoutthe cycle of variation are combined with observations for 100 ultrashortperiod Cepheids in order to delineate the Cepheid domain in the (beta,/C1/) and (M-bol, log Te) planes. The independently derived luminositycalibrations for bright giants and supergiants previously published arefound to closely reproduce the luminosities derived from theSandage-Tammann (1968) PL relation for most variables. The majority ofthe LPC appear to be overabundant in metals by comparison to the sun,and reddening determinations for the LPC suggest a small systematiccorrection to previous results.
|
새 글 등록
관련 링크
새 링크 등록
다음 그룹에 속해있음:
|
관측 및 측정 데이터
천체목록:
|