Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

TYC 3197-2856-1


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Near-infrared (JHK) Photometry of 131 Northern Galactic Classical Cepheids
Near-infrared photometric measurements for 131 Northern GalacticCepheids are presented. The Cepheid light curves are sampled with anaverage of 22 measurements per star fully covering the phase of eachCepheid. The J, H, and K light curves for each Cepheid were uniformlyinterpolated to find the intensity mean magnitudes within each band. Theresults are consistent within ±1% for 26 stars in common withprevious studies. This paper is the first in a projected series of twopapers which will provide additional fundamental data for Cepheids inthe Galaxy, namely, NIR photometry and line-of-sight extinction. In thecourse of this project, 93 additional variables were fortuitouslyobserved within the Cepheid program fields, 82 of which have previouslynot been identified.

BAV-Results of Observations
This 67th compilation contains the results of visual and photographicobservations of BAV-members mostly from the years 2009 and 2010. Here wepublish altogether 468 minima and maxima of 152 eclipsing binaries andpulsating stars. The data were acquired by 13 observers.

Accurate luminosities for F-G supergiants from FeII/FeI line depth ratios
Luminous FG supergiants can be used as extragalactic distanceindicators. In order to fully exploit the properties of these brightstars, we must first learn how to measure their luminosities. Basedprimarily on classical Cepheids and supergiants in clusters and OBassociations, we have derived 80 empirical relations connecting the linedepth ratios of FeII/FeI lines with the absolute magnitudesMv and the effective temperatures Teff. Theserelations have been applied to estimate the absolute magnitudes of 98 FGsupergiants with an error of +/-0.26mag. The application range of ourcalibrations is spectral types F2-G8 and luminosity classes I and II(absolute magnitudes Mv, -0.5 to -8 mag). A comparison of ourMv determinations with values from the literature shows goodagreement.

uvby-beta Photoelectric Photometry of Cepheid Stars
We present time-series uvby-beta photometry of 41 classical Cepheidstars. A brief discussion of a comparison between the present data andprevious photometric observations is included.

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

Galactic abundance gradients from Cepheids. On the iron abundance gradient around 10-12 kpc
Context: Classical Cepheids are excellent tracers of intermediate-massstars, since their distances can be estimated with very high accuracy.In particular, they can be adopted to trace the chemical evolution ofthe Galactic disk. Aims: Homogeneous iron abundance measurements for 33Galactic Cepheids located in the outer disk together with accuratedistance determinations based on near-infrared photometry are adopted toconstrain the Galactic iron gradient beyond 10 kpc. Methods: Ironabundances were determined using high resolution Cepheid spectracollected with three different observational instruments: ESPaDOnS@CFHT,Narval@TBL and FEROS@2.2m ESO/MPG telescope. Cepheid distances wereestimated using near-infrared (J,H,K-band) period-luminosity relationsand data from SAAO and the 2MASS catalog. Results: The least squaressolution over the entire data set indicates that the iron gradient inthe Galactic disk presents a slope of -0.052±0.003 textrm {dexkpc}-1 in the 5-17 kpc range. However, the change of the ironabundance across the disk seems to be better described by a linearregime inside the solar circle and a flattening of the gradient towardthe outer disk (beyond 10 kpc). In the latter region the iron gradientpresents a shallower slope, i.e. -0.012±0.014 textrm {dexkpc}-1. In the outer disk (10-12 kpc) we also found thatCepheids present an increase in the spread in iron abundance. Currentevidence indicates that the spread in metallicity depends on theGalactocentric longitude. Finally, current data do not support thehypothesis of a discontinuity in the iron gradient at Galactocentricdistances of 10-12 kpc. Conclusions: The occurrence of a spread in ironabundance as a function of the Galactocentric longitude indicates thatlinear radial gradients should be cautiously treated to constrain thechemical evolution across the disk.

Reddenings of FGK supergiants and classical Cepheids from spectroscopic data
Accurate and homogeneous atmospheric parameters(Teff,logg,Vt, [Fe/H]) are derived for 74 FGKnon-variable supergiants from high-resolution, high signal-to-noiseratio, echelle spectra. Extremely high precision for the inferredeffective temperatures (10-40K) is achieved by using the line-depthratio method. The new data are combined with atmospheric values for 164classical Cepheids, observed at 675 different pulsation phases, takenfrom our previously published studies. The derived values are correlatedwith unreddened B - V colours compiled from the literature for theinvestigated stars in order to obtain an empirical relationship of theform (B - V)0 = 57.984 -10.3587(logTeff)2 +1.67572(logTeff)3 - 3.356logg +0.0321Vt + 0.2615[Fe/H] + 0.8833(logg)(logTeff).The expression is used to estimate colour excesses E(B - V) forindividual supergiants and classical Cepheids, with a precision of+/-0.05 mag for supergiants and Cepheids with n = 1-2 spectra, reaching+/-0.025mag for Cepheids with n > 2 spectra, matching uncertaintiesfor the most sophisticated photometric techniques. The reddening scaleis also a close match to the system of space reddenings for Cepheids.The application range is for spectral types F0-K0 and luminosity classesI and II.

Baade-Wesselink distances and the effect of metallicity in classical cepheids
Context: The metallicity dependence of the Cepheid PL-relation is ofimportance in establishing the extra-galactic distance scale. Aims: Theaim of this paper is to investigate the metallicity dependence of thePL-relation in V and K based on a sample of 68 Galactic Cepheids withindividual Baade-Wesselink distances (some of the stars also have anHST-based parallax) and individually determined metallicities fromhigh-resolution spectroscopy. Methods: Literature values of the V-band,K-band and radial velocity data have been collected for a sample of 68classical cepheids that have their metallicity determined in theliterature from high-resolution spectroscopy. Based on a (V-K)surface-brightness relation and a projection factor derived in aprevious paper, distances have been derived from a Baade-Wesselinkanalysis. PL- and PLZ-relations in V and K are derived. Results: Theeffect of the adopted dependence of the projection factor on period isinvestigated. The change from a constant p-factor to one recentlysuggested in the literature with a mild dependence on log P results in aless steep slope by 0.1 unit, which is about the 1-sigma error bar inthe slope itself. The observed slope in the PL-relation in V in the LMCagrees with both hypotheses. In K the difference between the Galacticand LMC slope is larger and would favour a mild period dependence of thep-factor. The dependence on metallicity in V and K is found to bemarginal, and independent of the choice of p-factor on period. Thisresult is severely limited by the small range in metallicity covered bythe Galactic Cepheids.

Color Excesses of Classical Cepheids in uvby Photometry
In order to determine color excess in the uvby color system forfundamental-mode classical Cepheids, 29 Cepheids whose reliable distancevalues were compiled by Ngeow and Kanbur were selected as calibrationstars. Then intrinsic photometric indices were calculated using givendistances to derive a calibrated empirical relation between(b-y)0 and period, [c1], and [m1]through a linear fit. This relation was used to determine color excessesof E(b-y) for 116 Cepheids, and the period-color relation was derived.

A new calibration of Galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations
Context: The universality of the Cepheid period-luminosity (PL)relations has been under discussion since metallicity effects wereassumed to play a role in the value of the intercept and, more recently,of the slope of these relations. Aims: The goal of the present study isto calibrate the Galactic PL relations in various photometric bands(from B to K) and to compare the results to the well-established PLrelations in the LMC. Methods: We use a set of 59 calibrating stars,the distances of which are measured using five different distanceindicators: Hubble Space Telescope and revised Hipparcos parallaxes,infrared surface brightness and interferometric Baade-Wesselinkparallaxes, and classical Zero-Age-Main-Sequence-fitting parallaxes forCepheids belonging to open clusters or OB stars associations. A detaileddiscussion of absorption corrections and projection factor to be used isgiven. Results: We find no significant difference in the slopes of thePL relations between LMC and our Galaxy. Conclusions: We conclude thatthe Cepheid PL relations have universal slopes in all photometric bands,not depending on the galaxy under study (at least for LMC and MilkyWay). The possible zero-point variation with metal content is notdiscussed in the present work, but an upper limit of 18.50 for the LMCdistance modulus can be deduced from our data.Tables 2, 6 and 7 are only available in electronic form athttp://www.aanda.org

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

The reliability of Cepheid reddenings based on BVIC photometry
Externally determined values of E(B - V) (Espacered) for 40Galactic Cepheids are compared to reddenings determined using B - V andV - IC colour indices and the method of Dean, Warren &Cousins (EBVIC), updated to allow for metallicitycorrections. With three stars omitted on the grounds of uncertainty intheir space reddenings, we find thatThe two scales agree well in scale and zero-point, and there is nosignificant trend with period. Given the non-zero errors in the Cepheidspace reddenings, the estimated error in BVIC Cepheidreddenings is no more than 0.02.The above results are not significantly changed whether one corrects thereddenings for metallicity using older Bell models, or using more recentmodels by Sandage, Bell & Tripicco. Using the SBT models to correctthe reddenings of Cloud Cepheids for metallicity gives slightly smallerreddenings at a given metal deficiency, yielding `new' median reddeningsof 0.056 (Small Magellanic Cloud) and 0.076 (Large Magellanic Cloud) ifwe assume the same metal deficiencies as Caldwell and Coulson. Withmetal deficiencies of [M/H] = -0.7 and -0.25, the median reddenings are0.040 and 0.058.

Detailed chemical composition of Galactic Cepheids. A determination of the Galactic abundance gradient in the 8-12 kpc region
Aims.The recent introduction of high-resolution/large spectral-rangespectrographs has provided the opportunity to investigate the chemicalcomposition of classical Cepheids in detail. This paper focusses on newabundance determinations for iron and 6 light metals (O, Na, Mg, Al, Si,Ca) in 30 Galactic Cepheids. We also give a new estimate of the Galacticradial abundance gradient. Methods: The stellar effective temperatureswere determined using the method of line depth ratios, and the surfacegravity and the microturbulent velocity vt by imposing theionization balance between Fe I and Fe II with the help of curves ofgrowth. Abundances were calculated with classical LTE atmosphere models. Results: Abundances were obtained with rms accuracies of about0.05-0.10 dex for Fe, and 0.05-0.20 dex for the other elements. Cepheidsin our sample have solar-like abundances, and current measurements agreequite well with previous determinations. We computed "single zone"Galactic radial abundance gradients for the 8-12 kpc region and found aslope for iron of -0.061 dex kpc-1.Based on observations made with the 1.52 m ESO Telescope at La Silla,Chile.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

High-Mass Triple Systems: The Classical Cepheid Y Carinae
We have obtained a Hubble Space Telescope STIS ultraviolethigh-dispersion echelle-mode spectrum of the binary companion of thedouble-mode classical Cepheid Y Car. The velocity measured for the hotcompanion from this spectrum is very different from reasonablepredictions for binary motion, implying that the companion is itself ashort-period binary. The measured velocity changed by 7 kms-1 during the 4 days between two segments of theobservation, confirming this interpretation. We summarize ``binary''Cepheids that are in fact members of a triple system and find that atleast 44% are triples. The summary of information on Cepheids withorbits makes it likely that the fraction is underestimated.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy, Inc.

Radial Velocities of Galactic Cepheids
We report 490 radial velocities for 16 Galactic Cepheid variables. Thetypical uncertainty of a single velocity is +/-0.40 km s-1.Comparison with published velocities shows excellent agreement. Two ofthe Cepheids (Z Lac, S Sge) are known binaries and exhibit orbitalvelocity changes in our observing interval.

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Improvement of the CORS method for Cepheids radii determination based on Strömgren photometry
In this paper we present a modified version of the CORS method based ona new calibration of the Surface Brightness function in theStrömgren photometric system. The method has been tested by meansof synthetic light and radial velocity curves derived from nonlinearpulsation models. Detailed simulations have been performed to take intoaccount the quality of real observed curves as well as possible shiftsbetween photometric and radial velocity data. The method has been thenapplied to a sample of Galactic Cepheids with Strömgren photometryand radial velocity data to derive the radii and a new PR relation. As aresult we find log R = (1.19 ± 0.09) + (0.74 ± 0.11) logP (rms = 0.07). The comparison between our result and previous estimatesin the literature is satisfactory. Better results are expected from theadoption of improved model atmosphere grids.

A new Period-Radius relation for Galactic Classical Cepheids
We discuss a new Period-Radius (PR) relation for Galactic ClassicalCepheids, obtained by means of a new version of the CORS method whichhas been modified in order to be run with the Strömgren photometricsystem. The major change consists in the calibration of the SurfaceBrightness as a function of the two ``reddening free'' colourindexes [c1] and [m1], by means of the model atmospheres by Castelli etal. (1997). In this contribution we first briefly discuss somenumerical experiments performed on the basis of synthetic Cepheid lightcurves to test the accuracy of the method, and then report thePeriod-Radius relation for Classical Cepheids obtained by applying thethe new method to a sample of Galactic Cepheids.

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

A Revised Calibration of the MV-W(O I 7774) Relationship using Hipparcos Data: Its Application to Cepheids and Evolved Stars
A new calibration of the MV-W(O I 7774) relationship hasbeen calculated using better reddening and distance estimates for asample of 27 calibrator stars of spectral types A to G, based onaccurate parallaxes and proper motions from the Hipparcos and Tychocatalogues. The present calibration predicts absolute magnitude withaccuracies of +/-0.38mag for a sample covering a large range ofMV, from -9.5 to +0.35 mag. The color term included in aprevious paper has been dropped since its inclusion does not lead to anysignificant improvement in the calibration. The variation of the O I7774 feature in the classical cepheid SS Sct has been studied. Wecalculated a phase-dependent correction to random phase OI featurestrengths in Cepheids, such that it predicts mean absolute magnitudesusing the above calibration. After applying such a correction, we couldincrease the list of calibrators to 58 by adding MV and O Itriplet strength data for 31 classical Cepheids. The standard error ofthe calibration using the composite sample was comparable to thatobtained from the primary 27 calibrators, showing that it is possible tocalculate mean Cepheid luminosities from random phase observations ofthe O I 7774 feature. We use our derived calibrations to estimateMV for a set of evolved objects to be able to locate theirpositions in the HR diagram.

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Evidence for black holes
As an important test for General Relativity, the existence of a blackhole is always the focus of physicists and astronomers. Particularly inthese years, since a large number of advanced observational facilitiesare put into use and the techniques improved, the search for theevidence for black holes have made great progress, becoming one ofastronomical researching hotspots. In this paper, evidence for stellarblack holes and super-massive black holes in galactic nuclei isreviewed, and the great advances in black hole astrophysics are alsointroduced. Finally, we discuss some great developing projects and theprimary results of pursuing primordial black holes. The suggestions forobservations and the respect of astronomical evidence for black holesare put forward.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

The intermediate-band approach to the surface-brightness method for Cepheid radii and distance determination
The surface-brightness parameter Fν is calibrated in termsof the Strömgren intermediate-band colour b-y. The relationFν-(b-y)o valid for Cepheids is calibratedusing accurate near-infrared radii and distances for selected Cepheids.We have obtained uvby photometry for non-Cepheid giant and supergiantstars with known angular diameters and compared the slope and zero-pointof their Fν-(b-y)o relation with the Cepheidcalibration. We found that the two calibrations are significantlydifferent. The theoretical models lie in between the two calibrations.It is remarked that Fν-colour relations derived fromnon-Cepheids and involving blue colours (e.g. B-V or b-y) are notapplicable to Cepheids, while those involving redder colours (e.g. V-R,V-K or V-J) also produce good radii for Cepheids. Selected Cepheids ascalibrators lead to the accurate relationFν=3.898(+/-0.003)-0.378(+/-0.006)(b-y)o, whichallowed the calculation of radii and distances for a sample of 59Galactic Cepheids. The uncertainties in the zero-point and slope of theabove relation are similar to those obtained from near-infrared colours,and determine the accuracies in radii and distance calculations. Whileinfrared light and colour curves for Cepheids may be superior inprecision, the intermediate-band b-y colour allows the recovery of meanradii with an accuracy comparable to those obtained from the infraredsolutions. The derived distances are consistent within the uncertaintieswith those predicted by a widely accepted period-luminosityrelationship. Likewise, the resulting period-radius relation from theintermediate-band approach is in better agreement with infrared versionsthan with optical versions of this law. It is highlighted that theintermediate-band calibration of the surface-brightness method in thiswork is of comparable accuracy to the near-infrared calibrations. Thepresent results stress the virtues of uvby in determining the physicalparameters of supergiant stars of intermediate temperature.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Hattyú
Rektaszcenzió:21h51m41.44s
Deklináció:+43°08'02.5"
Vizuális fényesség:9.067
RA sajátmozgás:-3.5
Dec sajátmozgás:-4.6
B-T magnitude:10.202
V-T magnitude:9.161

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
TYCHO-2 2000TYC 3197-2856-1
USNO-A2.0USNO-A2 1275-16627164
HIPHIP 107899

→ További katalógusok és elnevezések lekérése VizieR-ből